“
动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。
”
——亞里士多德,物理學 VI:9, 239b15
常見的敘述為芝诺提出的追著烏龜的阿基里斯,本悖論因此得其名。芝诺提出让乌龟和阿基里斯赛跑,兩者起點不同,乌龟的起點位於阿基里斯身前1000米处,并且假定阿基里斯的速度是乌龟的10倍。比赛开始后,若阿基里斯跑了1000米,设所用的时间为t,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,他所用的时间为t/10,乌龟仍然領先他10米;当阿基里斯跑完下一个10米时,他所用的时间为t/100,乌龟仍然領先他1米。芝诺认为,阿基里斯永遠無法追上烏龜[2]。
如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑“数学派”所代表的毕达哥拉斯的“1>0.999...,1-0.999...>0”思想。[來源請求]然后,他又用这个悖论,嘲笑他的学生芝诺的“1=0.999...,但1-0.999...>0”思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的“1-0.999...=0,或1-0.999...>0”思想。
悖論的解決
编辑
如果將阿基里斯跑步的速度為每秒10m,烏龜爬行的速度為每秒0.1m,
並且在比賽之前,阿基里斯讓烏龜先爬999m,在這種條件下,阿基里斯追趕烏龜所用的時間為:
999 ÷ 10 = 99.9秒
(99.9 × 0.1) ÷ 10 = 0.999秒
(0.999 × 0.1) ÷ 10 = 0.00999秒
· · · · · ·
這些數字,按其先後排列,可以構成一個無限序列:
99.9, 0.999, 0.00999, · · ·
求其和:S = 99.9/(1 −1/100) = 100.909090...秒
因此阿基里斯只要跑101秒,即可超越烏龜。
換個角度說,阿基里斯之所以追不上烏龜,原因在於小前提「由於追趕者首先應該達到被追者出發之點,此時被追者已經往前走了一段距離。」已經限制了阿基里斯追趕的時間(距離)。
因此會得到無限的時間序列。
求極限值
编辑
追乌龟亦涉及到极限是否存在的問題。譬如说,阿基里斯的速度改為10m/s,乌龟的速度是1m/s,乌龟原先在阿基里斯前面9m。進行上述步驟後,總共所花的時間應表示為
t
=
0.9
+
0.09
+
0.009
+
.
.
.
=
0.999...
{\displaystyle t=0.9+0.09+0.009+...=0.999...}
。
其一,關於极限這个无限过程的意義,涉及到实无限(英语:Actual infinity)與潜无限(potential infinity)的討論。潜无限的性質是无限过程无法完成,故上述級數雖然能无限逼近1,但不能說是等於1──故沒有一個時間點(若有,必須是1)能代表乌龟被追上的時間。在潜无限的框架下,可以假设空间無法无限分割,如此一來此悖论就不存在了。但实无限的理論是,无限过程可以完成,即逼近的過程與其极限等價,故阿基里斯可以追上烏龜。現在的实数,极限,微积分都建立在实无限上。对潜无限来说,实数,极限等都不成立,只能无限逼近。
其二,關於要如何找到該無限過程的極限,歐拉曾提出「
0.9999999999
⋯
=
1
{\displaystyle 0.9999999999\dots =1}
」之證明如下:
主条目:0.999…
令
S
=
0.99999999999
…
{\displaystyle S=0.99999999999\dots }
則
10
S
=
9.9999999999
…
{\displaystyle 10S=9.9999999999\dots }
兩式相減可得:
10
S
−
S
=
9.9999999999
⋯
−
0.99999999999
…
9
S
=
9
S
=
1
{\displaystyle {\begin{aligned}10S-S&=9.9999999999\dots -0.99999999999\dots \\9S&=9\\S&=1\end{aligned}}}
故
0.99999999999
⋯
=
1
{\displaystyle 0.99999999999\dots =1}